Geometric algorithms for planning and simulation tasks in virtual prototyping

Elmar Schömer Max-Planck Institute for Computer Science Saarbrücken

June 3, 2002

Collaborators: Christian Lennerz, Joachim Reichel, Thomas Warken

Motivation

Applications:

- mounting and demounting operations
- ergonomic studies
- assembly planning

Realization:

- in a virtual environment
- with the help of virtual prototypes

Economic goals: cut costs, save time, increase quality

Simulation of multibody systems

Rigid bodies with unilateral contacts

The classical approach

relative contact acceleration in normal direction:

$$\mathbf{a} = \mathbf{C}^T \dot{\mathbf{u}} \ge \mathbf{0}$$
 with $\dot{\mathbf{u}} = \mathbf{M}^{-1} (\mathbf{C} \mathbf{f} + \mathbf{f}_{ext})$

formulation as a linear complementarity problem:

$$\mathbf{a_i} > 0 \Rightarrow \mathbf{f_i} = 0 \text{ and } \mathbf{f_i} > 0 \Rightarrow \mathbf{a_i} = 0$$

The role of contact forces

Contact forces

- prevent interpenetration of objects
- facilitate interactive manipulation of objects
- \bullet are necessary for haptic feedback

The tippe top

Some experiments

Evaluation of the simulation results

Evaluation of the simulation results

