Distance Computation Between Non-Convex Polyhedra

Christian Lennerz

June 17, 2002

Applications

Applications

Applications

The Distance Computation Problem

Definition 1 (Distance Computation Problem)

Given two polyhedra P_1 , P_2 . The distance computation problem is to determine the global minimum of the distance function δ between the respective point sets, together with a pair of witness points i.e.

- (*i*) the value $\delta^* := \delta(\mathbf{P}_1, \mathbf{P}_2)$,
- (ii) a pair of points (\mathbf{p}, \mathbf{q}) , s.t. $\delta^* = \delta(\mathbf{p}, \mathbf{q})$,

where δ denotes the (quadratic) EUCLIDEAN distance function between two points or set of points, respectively.

Observation 1

Given two polyhedra \mathcal{P}_1 and \mathcal{P}_2 in boundary representation. Let \mathcal{F}_i , \mathcal{E}_i and \mathcal{V}_i , i = 1, 2, denote the respective sets of faces, edges and vertices. For the distance between \mathcal{P}_1 and \mathcal{P}_2 we have:

 $\delta(\mathcal{P}_1,\mathcal{P}_2) \;=\;$

Observation 1

Given two polyhedra \mathcal{P}_1 and \mathcal{P}_2 in boundary representation. Let \mathcal{F}_i , \mathcal{E}_i and \mathcal{V}_i , i = 1, 2, denote the respective sets of faces, edges and vertices. For the distance between \mathcal{P}_1 and \mathcal{P}_2 we have:

 $\delta(\mathcal{P}_1, \mathcal{P}_2) = \delta(\partial \mathcal{P}_1, \partial \mathcal{P}_2)$

Observation 1

Given two polyhedra \mathcal{P}_1 and \mathcal{P}_2 in boundary representation. Let \mathcal{F}_i , \mathcal{E}_i and \mathcal{V}_i , i = 1, 2, denote the respective sets of faces, edges and vertices. For the distance between \mathcal{P}_1 and \mathcal{P}_2 we have:

$$\begin{split} \delta(\mathcal{P}_1, \mathcal{P}_2) &= \delta(\partial \mathcal{P}_1, \partial \mathcal{P}_2) \\ &= \min \left\{ \delta(f_1, f_2) \, \middle| \, f_1 \in \mathcal{F}_1, f_2 \in \mathcal{F}_1 \right\} \end{split}$$

Observation 1

Given two polyhedra \mathcal{P}_1 and \mathcal{P}_2 in boundary representation. Let \mathcal{F}_i , \mathcal{E}_i and \mathcal{V}_i , i = 1, 2, denote the respective sets of faces, edges and vertices. For the distance between \mathcal{P}_1 and \mathcal{P}_2 we have:

$$\begin{split} \delta(\mathcal{P}_1, \mathcal{P}_2) &= \delta(\partial \mathcal{P}_1, \partial \mathcal{P}_2) \\ &= \min \left\{ \delta(f_1, f_2) \, \middle| \, f_1 \in \mathcal{F}_1, f_2 \in \mathcal{F}_1 \right\} \\ &= \begin{cases} \min \left\{ \delta(\mathcal{F}_1, \mathcal{V}_2), \delta(\mathcal{V}_1, \mathcal{F}_2), \, \delta(\mathcal{E}_1, \mathcal{E}_2) \right\} & \text{if } \mathcal{P}_1 \cap \mathcal{P}_2 = \emptyset \, ; \\ 0 & \text{else} \, . \end{cases} \end{split}$$

Observation 1

Given two polyhedra \mathcal{P}_1 and \mathcal{P}_2 in boundary representation. Let \mathcal{F}_i , \mathcal{E}_i and \mathcal{V}_i , i = 1, 2, denote the respective sets of faces, edges and vertices. For the distance between \mathcal{P}_1 and \mathcal{P}_2 we have:

$$\begin{split} \delta(\mathcal{P}_1, \mathcal{P}_2) &= \delta(\partial \mathcal{P}_1, \partial \mathcal{P}_2) \\ &= \min \left\{ \delta(f_1, f_2) \, \middle| \, f_1 \in \mathcal{F}_1, f_2 \in \mathcal{F}_1 \right\} \\ &= \begin{cases} \min \left\{ \delta(\mathcal{F}_1, \mathcal{V}_2), \delta(\mathcal{V}_1, \mathcal{F}_2), \, \delta(\mathcal{E}_1, \mathcal{E}_2) \right\} & \text{if } \mathcal{P}_1 \cap \mathcal{P}_2 = \emptyset \, ; \\ 0 & \text{else} \, . \end{cases} \end{split}$$

DISTANCE($\mathcal{P}_1, \mathcal{P}_2$)

- (1) $d^* \leftarrow \infty$
- (2) foreach $f_1 \in \mathcal{F}_1$
- (3) foreach $f_2 \in \mathcal{F}_2$

 $DISTANCE(\mathcal{P}_1, \mathcal{P}_2)$

- (1) $d^* \leftarrow \infty$
- (2) foreach $f_1 \in \mathcal{F}_1$
- (3) **foreach** $f_2 \in \mathcal{F}_2$
- (4) $[\text{isDisjoint}, (p_1, p_2)] \leftarrow \text{INTERSECT}(f_1, f_2)$
- (5) if is Disjoint = false then return $[0, (p_1, p_2)]$

(8) if $d < d^*$ then $d^* \leftarrow d$, $p_i^* \leftarrow p_i$ i = 1, 2


```
DISTANCE(\mathcal{P}_1, \mathcal{P}_2)
(1) d^* \leftarrow \infty
(2) foreach f_1 \in \mathcal{F}_1
        foreach f_2 \in \mathcal{F}_2
(3)
            [isDisjoint, (p_1, p_2)] \leftarrow INTERSECT(f_1, f_2)
(4)
           if is Disjoint = false then return [0, (p_1, p_2)]
(5)
(6)
           foreach v_1 of f_1
               [d, (p_1, p_2)] \leftarrow VERTEXFACEDISTANCE(v_1, f_2)
(7)
              if d < d^* then d^* \leftarrow d, p_i^* \leftarrow p_i i = 1, 2
(8)
(9)
           foreach v_2 of f_2
               [d, (p_1, p_2)] \leftarrow VERTEXFACEDISTANCE(v_2, f_1)
(10)
              if d < d^* then d^* \leftarrow d, p_i^* \leftarrow p_i i = 1, 2
(11)
(12)
           foreach e<sub>1</sub> of f<sub>1</sub>
(13)
              foreach e<sub>2</sub> of f<sub>2</sub>
                  [d, (p_1, p_2)] \leftarrow EDGEEDGEDISTANCE(e_1, e_2)
(14)
                  \text{ if } d < d^* \text{ then } d^* \leftarrow d, \quad p_i^* \leftarrow p_i \quad i=1,2 \\
(15)
```

```
DISTANCE(\mathcal{P}_1, \mathcal{P}_2)
(1) d^* \leftarrow \infty
(2) foreach f_1 \in \mathcal{F}_1
(3)
        foreach f_2 \in \mathcal{F}_2
            [isDisjoint, (p_1, p_2)] \leftarrow INTERSECT(f_1, f_2)
(4)
           if is Disjoint = false then return [0, (p_1, p_2)]
(5)
(6)
           foreach v_1 of f_1
               [d, (p_1, p_2)] \leftarrow VERTEXFACEDISTANCE(v_1, f_2)
(7)
              if d < d^* then d^* \leftarrow d, p_i^* \leftarrow p_i i = 1, 2
(8)
(9)
           foreach v_2 of f_2
               [d, (p_1, p_2)] \leftarrow VERTEXFACEDISTANCE(v_2, f_1)
(10)
              if d < d^* then d^* \leftarrow d, p_i^* \leftarrow p_i i = 1, 2
(11)
(12)
           foreach e<sub>1</sub> of f<sub>1</sub>
(13)
              foreach e<sub>2</sub> of f<sub>2</sub>
                  [d, (p_1, p_2)] \leftarrow EDGEEDGEDISTANCE(e_1, e_2)
(14)
                  \text{ if } d < d^* \text{ then } d^* \leftarrow d, \quad p_i^* \leftarrow p_i \quad i=1,2 \\
(15)
        return |d^*, (p_1^*, p_2^*)|
(16)
```

Edge-Edge-Distance (I)

Let g_1 and g_2 denote the straight lines, on which the edges are embedded:

$$g_i = \left\{ a_i + \lambda_i v_i \, | \, \lambda_i \in \mathbb{R} \right\} \qquad i = 1, 2 \, .$$

Edge-Edge-Distance (I)

Let g_1 and g_2 denote the straight lines, on which the edges are embedded:

$$g_{\mathfrak{i}} = \left\{ a_{\mathfrak{i}} + \lambda_{\mathfrak{i}} v_{\mathfrak{i}} \, | \, \lambda_{\mathfrak{i}} \in \mathbb{R} \right\} \qquad \mathfrak{i} = 1,2 \, .$$

The quadratic distance between g_1 and g_2 is given by

$$\delta(g_1,g_2) = \left(\lambda_1 \boldsymbol{v}_1 - \lambda_2 \boldsymbol{v}_2 - \boldsymbol{v}_{12}\right)^2 ,$$

with $\mathbf{v}_{12} \coloneqq \mathbf{a}_2 - \mathbf{a}_1$.

Edge-Edge-Distance (I)

Let g_1 and g_2 denote the straight lines, on which the edges are embedded:

$$g_{\mathfrak{i}} = \left\{ a_{\mathfrak{i}} + \lambda_{\mathfrak{i}} v_{\mathfrak{i}} \, | \, \lambda_{\mathfrak{i}} \in \mathbb{R} \right\} \qquad \mathfrak{i} = 1, 2 \, .$$

The quadratic distance between g_1 and g_2 is given by

$$\delta(\mathbf{g}_1,\mathbf{g}_2) = \left(\lambda_1 \mathbf{v}_1 - \lambda_2 \mathbf{v}_2 - \mathbf{v}_{12}\right)^2 ,$$

with $\mathbf{v}_{12} \coloneqq \mathbf{a}_2 - \mathbf{a}_1$.

To minimize the distance function, we consider its partial derivatives with respect to λ_1 and λ_2 :

$$\frac{\partial \delta(\lambda_1, \lambda_2)}{\partial \lambda_1} = 2 \left(\lambda_1 \boldsymbol{v}_1 - \lambda_2 \boldsymbol{v}_2 - \boldsymbol{v}_{12}\right)^{\mathsf{T}} \boldsymbol{v}_1 = 0 \Leftrightarrow \lambda_1 \boldsymbol{v}_1^2 - \lambda_2 \boldsymbol{v}_1^{\mathsf{T}} \boldsymbol{v}_2 = \boldsymbol{v}_1^{\mathsf{T}} \boldsymbol{v}_{12} ,$$

$$\frac{\partial \delta(\lambda_1, \lambda_2)}{\partial \lambda_2} = -2 \left(\lambda_1 \boldsymbol{v}_1 - \lambda_2 \boldsymbol{v}_2 - \boldsymbol{v}_{12}\right)^{\mathsf{T}} \boldsymbol{v}_2 = 0 \Leftrightarrow \lambda_1 \boldsymbol{v}_1^{\mathsf{T}} \boldsymbol{v}_2 - \lambda_2 \boldsymbol{v}_2^{\mathsf{T}} = \boldsymbol{v}_2^{\mathsf{T}} \boldsymbol{v}_{12} .$$

Edge-Edge-Distance (II)

So far, the parameter λ_i^* that minimizes the distance depends on the other parameter:

Edge-Edge-Distance (II)

So far, the parameter λ_i^* that minimizes the distance depends on the other parameter:

$$\lambda_1^*(\lambda_2) = \frac{\lambda_2 \boldsymbol{v}_1^{\mathsf{T}} \boldsymbol{v}_2 + \boldsymbol{v}_1^{\mathsf{T}} \boldsymbol{v}_{12}}{\boldsymbol{v}_1^2} = \frac{\lambda_2 V_{12} + W_1}{V_1}, \qquad (1)$$

$$\lambda_{2}^{*}(\lambda_{1}) = \frac{\lambda_{1} \boldsymbol{v}_{1}^{T} \boldsymbol{v}_{2} - \boldsymbol{v}_{2}^{T} \boldsymbol{v}_{12}}{\boldsymbol{v}_{2}^{2}} = \frac{\lambda_{1} V_{12} - W_{2}}{V_{2}}, \qquad (2)$$

with $V_{12} := \mathbf{v}_1^T \mathbf{v}_2, \ V_i := \mathbf{v}_i^2, \ W_i := \mathbf{v}_i^T \mathbf{v}_{12}, \ i = 1, 2.$

Edge-Edge-Distance (II)

So far, the parameter λ_i^* that minimizes the distance depends on the other parameter:

$$\lambda_1^*(\lambda_2) = \frac{\lambda_2 \boldsymbol{v}_1^{\mathsf{T}} \boldsymbol{v}_2 + \boldsymbol{v}_1^{\mathsf{T}} \boldsymbol{v}_{12}}{\boldsymbol{v}_1^2} = \frac{\lambda_2 V_{12} + W_1}{V_1}, \qquad (1)$$

$$\lambda_{2}^{*}(\lambda_{1}) = \frac{\lambda_{1} \boldsymbol{v}_{1}^{\mathsf{T}} \boldsymbol{v}_{2} - \boldsymbol{v}_{2}^{\mathsf{T}} \boldsymbol{v}_{12}}{\boldsymbol{v}_{2}^{2}} = \frac{\lambda_{1} V_{12} - W_{2}}{V_{2}}, \qquad (2)$$

with $V_{12} := v_1^T v_2$, $V_i := v_i^2$, $W_i := v_i^T v_{12}$, i = 1, 2.

Eliminating one variable yields λ_i^* , i = 1, 2, explicitly:

$$\lambda_1^* = \frac{W_1 V_2 - W_2 V_{12}}{V_1 V_2 - V_{12}^2} \qquad \lambda_2^* = \frac{W_1 V_{12} - W_2 V_1}{V_1 V_2 - V_{12}^2}, \qquad (3)$$

if $V_1V_2 - V_{12}^2 = \boldsymbol{v}_1^2\boldsymbol{v}_2^2 - (\boldsymbol{v}_1^T\boldsymbol{v}_2)^2 = (\boldsymbol{v}_1 \times \boldsymbol{v}_2)^2 \neq \boldsymbol{0}.$

Edge-Edge-Distance (III)

Problems:

- λ_1^* or λ_2^* are outside the parameter interval [0, 1]:
 - Explanation: The edges represent line segments, not straight lines.
 - In this case we know that at least one of the closest points is an end point of an edge.
 - Solution: Consider the endpoints and use equation 1 and 2 to compute the closest points on the other line.

Edge-Edge-Distance (III)

Problems:

- λ_1^* or λ_2^* are outside the parameter interval [0, 1]:
 - Explanation: The edges represent line segments, not straight lines.
 - In this case we know that at least one of the closest points is an end point of an edge.
 - Solution: Consider the endpoints and use equation 1 and 2 to compute the closest points on the other line.
- The denominator in equation 3 vanishes:
 - Explanation: The edges are parallel.
 - Also in this case we have that at least one of the closest points is an end point of an edge.
 - Solution: same as above.

Let $\Sigma(f)$ denote the plane on which the face f is embedded, i.e.

$$\Sigma(f) = \{ \mathbf{x} \in \mathbb{R}^3 \, \big| \, \mathbf{n}^T \mathbf{x} = \mathbf{n}_0, \, \|\mathbf{n}\| = 1 \}.$$

Thereby the value n_0 corresponds to the distance from the plane to the origin.

Let $\Sigma(f)$ denote the plane on which the face f is embedded, i.e.

$$\Sigma(f) = \{ \mathbf{x} \in \mathbb{R}^3 \, \big| \, \mathbf{n}^{\mathsf{T}} \mathbf{x} = \mathbf{n}_0, \, \|\mathbf{n}\| = 1 \}.$$

Thereby the value n_0 corresponds to the distance from the plane to the origin.

The distance between the query point p an the plane $\Sigma(f)$ is given by

$$\delta(\mathbf{p}, \Sigma(f)) = |\mathbf{n}^{\mathsf{T}}\mathbf{p} - \mathbf{n}_0|^2$$
.

Let $\Sigma(f)$ denote the plane on which the face f is embedded, i.e.

$$\Sigma(f) = \{ \mathbf{x} \in \mathbb{R}^3 \, \big| \, \mathbf{n}^{\mathsf{T}} \mathbf{x} = \mathbf{n}_0, \, \|\mathbf{n}\| = 1 \}.$$

Thereby the value n_0 corresponds to the distance from the plane to the origin.

The distance between the query point **p** an the plane $\Sigma(f)$ is given by

$$\delta(\mathbf{p}, \Sigma(f)) = |\mathbf{n}^{\mathsf{T}}\mathbf{p} - \mathbf{n}_0|^2.$$

The closest point to **p** on $\Sigma(f)$ is equal to the projection of **p** onto the plane:

$$\overline{\mathbf{p}} := \mathbf{p} - (\mathbf{n}^{\mathsf{T}}\mathbf{p} - \mathbf{n}_0)\mathbf{n}$$
.

Let $\Sigma(f)$ denote the plane on which the face f is embedded, i.e.

$$\Sigma(f) = \{ \mathbf{x} \in \mathbb{R}^3 \, \big| \, \mathbf{n}^{\mathsf{T}} \mathbf{x} = \mathbf{n}_0, \, \|\mathbf{n}\| = 1 \}.$$

Thereby the value n_0 corresponds to the distance from the plane to the origin.

The distance between the query point **p** an the plane $\Sigma(f)$ is given by

$$\delta(\mathbf{p}, \Sigma(f)) = |\mathbf{n}^{\mathsf{T}}\mathbf{p} - \mathbf{n}_0|^2.$$

The closest point to **p** on $\Sigma(f)$ is equal to the projection of **p** onto the plane:

$$\overline{\mathbf{p}} := \mathbf{p} - (\mathbf{n}^{\mathsf{T}}\mathbf{p} - \mathbf{n}_0)\mathbf{n}$$
.

- $\overline{\mathbf{p}}$ is also the closest point of f to \mathbf{p} , iff it is lying inside the polygon.
- Otherwise, a closest point of f to **p** is located on one of the boundary edges of the polygon.

Definition 2 (Bounding Volume)

A bounding volume is a geometric primitive enclosing an arbitrary point set, i.e. an outer approximation.

Definition 2 (Bounding Volume)

A bounding volume is a geometric primitive enclosing an arbitrary point set, i.e. an outer approximation.

Definition 2 (Bounding Volume)

A bounding volume is a geometric primitive enclosing an arbitrary point set, i.e. an outer approximation.

Definition 2 (Bounding Volume)

A bounding volume is a geometric primitive enclosing an arbitrary point set, i.e. an outer approximation.

Types of Bounding Volumes:

- Spheres [Hubbard95],[Palmer,Grimsdale95]
- Oriented Bounded Boxes (OBB) [Gottschalk,Lin,Manocha96]
- Fixed-Directions Hulls (FDH_k or k-DOPS) [*Held,Klosowski,Mitchell96*] Special case: Axis-Aligned Bounding Boxes (AABB) [*Zachmann,Felger95*]
- Swept Sphere Volumes [Larsen, Gottschalk, Lin, Manocha99]

Bounding Volume Hierarchy

Definition 3 (Bounding Volume Hierarchy)

A bounding volume hierarchy is a tree structure successively refining the boundary of a polyhedron (or even a polygon soup) and covering each refinement by a set of bounding volumes.

Distance Computation Using BV-Hierarchies

Distance Computation Using BV-Hierarchies

Distance Computation Using BV-Hierarchies

Implementing the Algorithm

Topics to discuss:

- To build the hierarchy we need
 - a strategy for partitioning a given face set,
 - algorithms to compute "tight" bounding volumes of a given face set.

Implementing the Algorithm

Topics to discuss:

- To build the hierarchy we need
 - a strategy for partitioning a given face set,
 - algorithms to compute "tight" bounding volumes of a given face set.
- To prune subtrees in the hierarchy we need
 - efficient algorithms to update bounding volumes after object movement,
 - efficient algorithms to compute the distance between bounding volumes.

Minimal Bounding Volumes

Task:

Compute the bounding volume for a set of faces such that the volume is optimal with respect to a given measure of approximation quality.

Minimal Bounding Volumes

Task:

Compute the bounding volume for a set of faces such that the volume is optimal with respect to a given measure of approximation quality.

Measures of Approximation Quality:

- Volume
- Diameter
- Directed HAUSDORFF-Distance [Eckstein98]

Minimal Bounding Volumes

Task:

Compute the bounding volume for a set of faces such that the volume is optimal with respect to a given measure of approximation quality.

Measures of Approximation Quality:

- Volume
- Diameter
- Directed HAUSDORFF-Distance [Eckstein98]

Definition 4 (Directed HAUSDORFF Distance) *Given two point sets* A *and* B*, then the value*

$$\delta_{H}(A,B) := \max_{a \in A} \min_{b \in B} \delta(a,b)$$

is called directed HAUSDORFF-distance from A to B.

Let $S(\mathbf{c}, \mathbf{r})$ be a sphere with center \mathbf{c} and radius \mathbf{r} . The volume is given as

$$V(S) = \frac{4}{3}\pi r^3 \, .$$

Let $S(\mathbf{c}, \mathbf{r})$ be a sphere with center \mathbf{c} and radius \mathbf{r} . The volume is given as

$$\mathsf{V}(\mathsf{S}) = \frac{4}{3}\pi r^3 \, .$$

To minimize the volume we have to find the minimal radius $r^* := r(\mathbf{c}^*)$,

$$r(\mathbf{c}) = \max_{\mathbf{v}\in\mathcal{V}(\mathcal{F})} \|\mathbf{v}-\mathbf{c}\|$$
$$= \max_{\mathbf{v}\in\mathsf{CH}(\mathcal{V})} \|\mathbf{v}-\mathbf{c}\|.$$

Let $S(\mathbf{c}, \mathbf{r})$ be a sphere with center \mathbf{c} and radius \mathbf{r} . The volume is given as

$$\mathsf{V}(\mathsf{S}) = \frac{4}{3}\pi r^3 \, .$$

To minimize the volume we have to find the minimal radius $r^* := r(\mathbf{c}^*)$,

$$\mathbf{r}(\mathbf{c}) = \max_{\mathbf{v}\in\mathcal{V}(\mathcal{F})} \|\mathbf{v}-\mathbf{c}\|$$
$$= \max_{\mathbf{v}\in\mathsf{CH}(\mathcal{V})} \|\mathbf{v}-\mathbf{c}\|.$$

• The function $r(\mathbf{c}) : \mathbb{R}^3 \to \mathbb{R}$ is convex but not differentiable.

Let $S(\mathbf{c}, \mathbf{r})$ be a sphere with center \mathbf{c} and radius \mathbf{r} . The volume is given as

$$\mathsf{V}(\mathsf{S}) = \frac{4}{3}\pi r^3 \, .$$

To minimize the volume we have to find the minimal radius $r^* := r(\mathbf{c}^*)$,

$$\mathbf{r}(\mathbf{c}) = \max_{\mathbf{v}\in\mathcal{V}(\mathcal{F})} \|\mathbf{v}-\mathbf{c}\|$$
$$= \max_{\mathbf{v}\in\mathsf{CH}(\mathcal{V})} \|\mathbf{v}-\mathbf{c}\|.$$

- The function $r(\mathbf{c}) : \mathbb{R}^3 \to \mathbb{R}$ is convex but not differentiable.
- The minimization problem can be solved using methods of non-linear convex optimization.

Let $S(\mathbf{c}, \mathbf{r})$ be a sphere with center \mathbf{c} and radius \mathbf{r} . The volume is given as

$$\mathsf{V}(\mathsf{S}) = \frac{4}{3}\pi r^3 \, .$$

To minimize the volume we have to find the minimal radius $r^* := r(\mathbf{c}^*)$,

$$\mathbf{r}(\mathbf{c}) = \max_{\mathbf{v}\in\mathcal{V}(\mathcal{F})} \|\mathbf{v}-\mathbf{c}\|$$
$$= \max_{\mathbf{v}\in\mathsf{CH}(\mathcal{V})} \|\mathbf{v}-\mathbf{c}\|.$$

- The function $r(\mathbf{c}) : \mathbb{R}^3 \to \mathbb{R}$ is convex but not differentiable.
- The minimization problem can be solved using methods of non-linear convex optimization.
- In practice one uses a combinatorial algorithm [*Welzl91*] that incrementally computes the minimal enclosing sphere in expected time $O(|\mathcal{V}|)$.

OBB of Minimal Volume

The OBB is represented by a matrix $\mathbf{D} = [\mathbf{d}_1, \mathbf{d}_2, \mathbf{d}_3]$ of normalized box directions, a center \mathbf{c} and a vector of extends $\overline{\mathbf{d}}$. The volume is given by

$$\begin{split} V(B) &= \prod_{i=1}^{3} \overline{d}_{i} \;, \\ \text{with} \quad \overline{d}_{i} &= \big(\max_{\nu \in \mathcal{V}(\mathcal{F})} \boldsymbol{d}_{i}^{\mathsf{T}} \boldsymbol{\nu} - \min_{\nu \in \mathcal{V}(\mathcal{F})} \boldsymbol{d}_{i}^{\mathsf{T}} \boldsymbol{\nu} \big), \quad i = 1, 2, 3 \;. \end{split}$$

OBB of Minimal Volume

The OBB is represented by a matrix $\mathbf{D} = [\mathbf{d}_1, \mathbf{d}_2, \mathbf{d}_3]$ of normalized box directions, a center \mathbf{c} and a vector of extends $\overline{\mathbf{d}}$. The volume is given by

$$\begin{split} V(B) &= \prod_{i=1}^{3} \overline{d}_{i} \;, \\ \text{with} \quad \overline{d}_{i} &= \big(\max_{\nu \in \mathcal{V}(\mathcal{F})} \boldsymbol{d}_{i}^{\mathsf{T}} \boldsymbol{\nu} - \min_{\nu \in \mathcal{V}(\mathcal{F})} \boldsymbol{d}_{i}^{\mathsf{T}} \boldsymbol{\nu} \big), \quad i = 1, 2, 3 \;. \end{split}$$

Since **D** is a rotation matrix, there are EULER-angles α , β , γ , s.t.

 $\mathbf{D} = \mathbf{R}(\alpha, \beta, \gamma).$

OBB of Minimal Volume

The OBB is represented by a matrix $\mathbf{D} = [\mathbf{d}_1, \mathbf{d}_2, \mathbf{d}_3]$ of normalized box directions, a center \mathbf{c} and a vector of extends $\overline{\mathbf{d}}$. The volume is given by

$$\begin{split} V(B) &= \prod_{i=1}^{3} \overline{d}_{i} \;, \\ \text{with} \quad \overline{d}_{i} &= \big(\max_{\nu \in \mathcal{V}(\mathcal{F})} \boldsymbol{d}_{i}^{\mathsf{T}} \boldsymbol{\nu} - \min_{\nu \in \mathcal{V}(\mathcal{F})} \boldsymbol{d}_{i}^{\mathsf{T}} \boldsymbol{\nu} \big), \quad i = 1, 2, 3 \;. \end{split}$$

Since **D** is a rotation matrix, there are EULER-angles α , β , γ , s.t.

$$\mathsf{D} = \mathsf{R}(\alpha, \beta, \gamma).$$

Now we have to solve a non-linear and non-convex optimization problem:

$$\begin{array}{ll} \min & \prod_{i=1}^{3} \left(\max_{\nu \in \mathcal{V}(\mathcal{F})} \mathbf{d}_{i}(\alpha, \beta, \gamma)^{\mathsf{T}} \boldsymbol{\nu} - \min_{\nu \in \mathcal{V}(\mathcal{F})} \mathbf{d}_{i}(\alpha, \beta, \gamma)^{\mathsf{T}} \boldsymbol{\nu} \right) \\ \text{s.t.} & \alpha, \beta, \gamma \in [0, 2\pi] \end{array}$$

• The algorithm of O'ROURKE exploits the following necessary condition to find the enclosing box of minimal volume:

A box of minimal volume circumscribing a convex polyhedron must have at least two adjacent faces flush with the edges of the polyhedron. [O'Rourke85]

• The algorithm of O'ROURKE exploits the following necessary condition to find the enclosing box of minimal volume:

A box of minimal volume circumscribing a convex polyhedron must have at least two adjacent faces flush with the edges of the polyhedron. [O'Rourke85]

– It enumerates all pairs of edges of the polyhedron and determines for each pair the OBB of minimal volume in time $O(|\mathcal{E}|)$.

• The algorithm of O'ROURKE exploits the following necessary condition to find the enclosing box of minimal volume:

A box of minimal volume circumscribing a convex polyhedron must have at least two adjacent faces flush with the edges of the polyhedron. [O'Rourke85]

- It enumerates all pairs of edges of the polyhedron and determines for each pair the OBB of minimal volume in time $O(|\mathcal{E}|)$.
- Running Time: $O(|\mathcal{E}|^3)$

• The algorithm of O'ROURKE exploits the following necessary condition to find the enclosing box of minimal volume:

A box of minimal volume circumscribing a convex polyhedron must have at least two adjacent faces flush with the edges of the polyhedron. [O'Rourke85]

- It enumerates all pairs of edges of the polyhedron and determines for each pair the OBB of minimal volume in time $O(|\mathcal{E}|)$.
- Running Time: $O(|\mathcal{E}|^3)$
- The heuristic of GOTTSCHALK ET AL. is based on the following idea: *The bounding box should be oriented along the principal axes of the enclosed*

The bounding box should be oriented along the principal axes of the enclosed face set. [Gottschalk,Lin,Manocha96]

• The algorithm of O'ROURKE exploits the following necessary condition to find the enclosing box of minimal volume:

A box of minimal volume circumscribing a convex polyhedron must have at least two adjacent faces flush with the edges of the polyhedron. [O'Rourke85]

- It enumerates all pairs of edges of the polyhedron and determines for each pair the OBB of minimal volume in time $O(|\mathcal{E}|)$.
- Running Time: $O(|\mathcal{E}|^3)$
- The heuristic of GOTTSCHALK ET AL. is based on the following idea: *The bounding box should be oriented along the principal axes of the enclosed face set.* [*Gottschalk,Lin,Manocha96*]
 - The algorithm first computes the covariance matrix by sampling over the vertices of $CH(\mathcal{V}(\mathcal{F}))$ or (better) all surface points of \mathcal{F} .

• The algorithm of O'ROURKE exploits the following necessary condition to find the enclosing box of minimal volume:

A box of minimal volume circumscribing a convex polyhedron must have at least two adjacent faces flush with the edges of the polyhedron. [O'Rourke85]

- It enumerates all pairs of edges of the polyhedron and determines for each pair the OBB of minimal volume in time $O(|\mathcal{E}|)$.
- Running Time: $O(|\mathcal{E}|^3)$
- The heuristic of GOTTSCHALK ET AL. is based on the following idea: *The bounding box should be oriented along the principal axes of the enclosed face set.* [*Gottschalk,Lin,Manocha96*]
 - The algorithm first computes the covariance matrix by sampling over the vertices of $CH(\mathcal{V}(\mathcal{F}))$ or (better) all surface points of \mathcal{F} .
 - Determining the eigenvectors of the covariance matrix gives the principal axes.

Task:

Task:

Let $\alpha \geq 2$ denote the degree of the hierarchy and \mathcal{F} the given face set. Determine a partition $\{\mathcal{F}_1, \ldots, \mathcal{F}_{\alpha}\}$ of \mathcal{F} and bounding volumes H_1, \ldots, H_{α} , s.t. a given measure of quality is maximized.

• Combinatorics: for $\alpha = 2$ there are already $\frac{1}{2}(2^n - 2)$ partitions.

Task:

- Combinatorics: for $\alpha = 2$ there are already $\frac{1}{2}(2^n 2)$ partitions.
- Some related problems are NP-complete: e.g. *Euclidean-k-center*.

Task:

- Combinatorics: for $\alpha = 2$ there are already $\frac{1}{2}(2^n 2)$ partitions.
- Some related problems are NP-complete: e.g. *Euclidean-k-center*.
- In practice [*Held,Klosowski,Mitchell95*],[*Gottschalk,Lin,Manocha96*] one uses a simple heuristic with geometric intuition:

Task:

- Combinatorics: for $\alpha = 2$ there are already $\frac{1}{2}(2^n 2)$ partitions.
- Some related problems are NP-complete: e.g. *Euclidean-k-center*.
- In practice [*Held,Klosowski,Mitchell95*],[*Gottschalk,Lin,Manocha96*] one uses a simple heuristic with geometric intuition:
 - Associate each polygon with a single reference point (e.g. the centroid).

Task:

- Combinatorics: for $\alpha = 2$ there are already $\frac{1}{2}(2^n 2)$ partitions.
- Some related problems are NP-complete: e.g. *Euclidean-k-center*.
- In practice [*Held,Klosowski,Mitchell95*],[*Gottschalk,Lin,Manocha96*] one uses a simple heuristic with geometric intuition:
 - Associate each polygon with a single reference point (e.g. the centroid).
 - Choose a splitting plane (direction and position).

Task:

- Combinatorics: for $\alpha = 2$ there are already $\frac{1}{2}(2^n 2)$ partitions.
- Some related problems are NP-complete: e.g. *Euclidean-k-center*.
- In practice [*Held,Klosowski,Mitchell95*],[*Gottschalk,Lin,Manocha96*] one uses a simple heuristic with geometric intuition:
 - Associate each polygon with a single reference point (e.g. the centroid).
 - Choose a splitting plane (direction and position).
 - Assign each polygon to one side of the plane by locating its reference point.

Choosing the Direction of the Splitting Plane

The normal of the splitting plane is typically chosen as

- one of the principal axes of the given face set [Gottschalk,Lin,Manocha96],
- one of the coordinate axes [Held,Klosowski,Mitchell95].

Choosing the Direction of the Splitting Plane

The normal of the splitting plane is typically chosen as

- one of the principal axes of the given face set [Gottschalk,Lin,Manocha96],
- one of the coordinate axes [Held,Klosowski,Mitchell95].

Thereby one can consider the following objective functions:

• Choose the axis, that minimizes the sum of the volumes or the maximal volume of the resulting child BVs:

$$\min_{d\in D} \sum_{j=1}^{\alpha} V\big(H_d\big) \quad \text{or} \quad \min_{d\in D} \max_{1\leq j\leq \alpha} V\big(H_d\big) \;.$$

Choosing the Direction of the Splitting Plane

The normal of the splitting plane is typically chosen as

- one of the principal axes of the given face set [Gottschalk,Lin,Manocha96],
- one of the coordinate axes [Held,Klosowski,Mitchell95].

Thereby one can consider the following objective functions:

• Choose the axis, that minimizes the sum of the volumes or the maximal volume of the resulting child BVs:

$$\min_{d\in D}\sum_{j=1}^{\alpha}V(H_d) \quad \text{or} \quad \min_{d\in D}\max_{1\leq j\leq \alpha}V(H_d) \ .$$

• Choose the axis that yields the largest variance when projecting the reference points onto:

$$\max_{d\in D} \frac{1}{|\mathcal{F}|} \sum_{f\in \mathcal{F}} (d^T p_f - \mu)^2 , \qquad \mu := \frac{1}{|\mathcal{F}|} \sum_{f\in \mathcal{F}} d^T p_f .$$

Choosing the Position of the Splitting Plane

To choose the position of splitting plane one can consider the following objective functions:

 Choose the point p_f for which the projection is closest to the mean of all projected reference points:

$$\min_{\mathsf{f}\in\mathcal{F}} \|\mathbf{d}^{\mathsf{T}}\mathbf{p}_{\mathsf{f}} - \boldsymbol{\mu}\| \ .$$

Choosing the Position of the Splitting Plane

To choose the position of splitting plane one can consider the following objective functions:

 Choose the point p_f for which the projection is closest to the mean of all projected reference points:

$$\min_{\mathsf{f}\in\mathcal{F}}\|\mathbf{d}^{\mathsf{T}}\mathbf{p}_{\mathsf{f}}-\boldsymbol{\mu}\|.$$

 \bullet Choose the point $p_{\rm f}$ that yields the median of the projected reference points.

Distance Computation Between Bounding Volumes

Tasks:

- Compute the Euclidean distance between the geometric primitives: spheres, OBBs, AABBs, FDH_k...
- Minimize the effort spent on updating the bounding volumes during object movement.

Updating Bounding Volumes

Problem:

The movement of objects in time implies that:

- the geometry has to be updated according to the new position and orientation of the object,
- the bounding volume hierarchy has to be updated, since, in general, the BVs are no longer optimal with respect the transformed face set.

Updating Bounding Volumes

Problem:

The movement of objects in time implies that:

- the geometry has to be updated according to the new position and orientation of the object,
- the bounding volume hierarchy has to be updated, since, in general, the BVs are no longer optimal with respect the transformed face set.

Cost of BV-Update

The cost of updating bounding volumes depends on their closure properties under translation and rotation:

- Minimal Bounding Spheres and OBBs preserve their optimality properties under translation and rotation.
- FDH_ks and AABBs must be recomputed to become optimal with respect to the rotated face set.

Cost of BV-Update

The cost of updating bounding volumes depends on their closure properties under translation and rotation:

- Minimal Bounding Spheres and OBBs preserve their optimality properties under translation and rotation.
- FDH_ks and AABBs must be recomputed to become optimal with respect to the rotated face set.

Reducing the update costs:

- By transforming one object into the local coordinate system of the other, we only have to update the BV-hierarchy of one object.
- For FDH_ks and AABBs, we can apply the object transformation to the BV of the previous time frame and compute the optimal BV of this transformed BV.

The Edge Classification Algorithm [Meyer86]

Observation 2 (Box-Box-Distance)

If the boxes are disjoint, then the minimal distance is determined by

(*i*) an edge of B_1 and the box B_2 or

(ii) a vertex of B_2 and a face of B_1 .

The Edge Classification Algorithm [Meyer86]

Observation 2 (Box-Box-Distance)

If the boxes are disjoint, then the minimal distance is determined by

- (*i*) an edge of B_1 and the box B_2 or
- (ii) a vertex of B_2 and a face of B_1 .

Idea:

• Case (ii): In the local coordinate system of B₁ one only needs coordinate comparisons.

The Edge Classification Algorithm [Meyer86]

Observation 2 (Box-Box-Distance)

If the boxes are disjoint, then the minimal distance is determined by

- (*i*) an edge of B_1 and the box B_2 or
- (ii) a vertex of B_2 and a face of B_1 .

- Case (ii): In the local coordinate system of B₁ one only needs coordinate comparisons.
- Case (i): Exploit box geometry to reduce the number of edge-edge tests:

The Edge Classification Algorithm [Meyer86]

Observation 2 (Box-Box-Distance)

If the boxes are disjoint, then the minimal distance is determined by

- (i) an edge of B_1 and the box B_2 or
- (ii) a vertex of B_2 and a face of B_1 .

- Case (ii): In the local coordinate system of B₁ one only needs coordinate comparisons.
- Case (i): Exploit box geometry to reduce the number of edge-edge tests:
 - Assign the edges of one box to the VORONOI regions of the other box.

The Edge Classification Algorithm [Meyer86]

Observation 2 (Box-Box-Distance)

If the boxes are disjoint, then the minimal distance is determined by

- (*i*) an edge of B_1 and the box B_2 or
- (ii) a vertex of B_2 and a face of B_1 .

- Case (ii): In the local coordinate system of B₁ one only needs coordinate comparisons.
- Case (i): Exploit box geometry to reduce the number of edge-edge tests:
 - Assign the edges of one box to the VORONOI regions of the other box.
 - Use region specific proximity tests to compute the distance.

The Edge Classification Algorithm [Meyer86]

Observation 2 (Box-Box-Distance)

If the boxes are disjoint, then the minimal distance is determined by

- (i) an edge of B_1 and the box B_2 or
- (ii) a vertex of B_2 and a face of B_1 .

- Case (ii): In the local coordinate system of B₁ one only needs coordinate comparisons.
- Case (i): Exploit box geometry to reduce the number of edge-edge tests:
 - Assign the edges of one box to the VORONOI regions of the other box.
 - Use region specific proximity tests to compute the distance.
 - Break the edge into pieces if it passes through more than one cell.

The Edge Classification Algorithm [Meyer86]

Observation 2 (Box-Box-Distance)

If the boxes are disjoint, then the minimal distance is determined by

- (i) an edge of B_1 and the box B_2 or
- (ii) a vertex of B_2 and a face of B_1 .

- Case (ii): In the local coordinate system of B₁ one only needs coordinate comparisons.
- Case (i): Exploit box geometry to reduce the number of edge-edge tests:
 - Assign the edges of one box to the VORONOI regions of the other box.
 - Use region specific proximity tests to compute the distance.
 - Break the edge into pieces if it passes through more than one cell.

Christian Lennerz

