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Conics, Quadrics and Quadratic Complexes

• Quadratic Complexes are polyhedra with faces embedded on
quadrics and conics as edges.

• A quadric is given by an algebraic equation of degree 2:

{x ∈ R
3 |xT Ax + 2aT x + a0 = 0},

for a vector a ∈ R
3 and symmetric matrix A ∈ R

3×3.

• A conic is explicitly given as the following point set:

{p ∈ R
3 |p = c + r(t)u + s(t)v},

where (r, s) ∈ {(sin, cos), (sinh, cosh), (id, 0), (id, id2)} and
u, v ∈ R

3 with uT v = 0.



Examples of Quadrics
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Quadratic Complexes in CAD I

Filleting

Revolving Tubing



Quadratic Complexes in CAD II

Boolean Operations (Union)



Normal Forms of Quadrics

Central Surfaces: det(A) 6= 0

Ellipsoids /

Hyperboloids
a = 0 a0 6= 0

Cone a = 0 a0 = 0

Non-Central Surfaces: det(A) = 0

Paraboloids A3 = 0 a3 6= 0 a0 = 0

Elliptical /Hyperbolical

Cylinder
A3 = 0 a = 0 a0 6= 0

Parabolical Cylinder A1 = A3 = 0 a1 6= 0 a0 = 0



The Distance Computation Problem

Definition 1. Given two quadratic complexes C1, C2. The
distance computation problem is to determine the global minimum
of the distance function δ between the respective point sets,
together with a pair of witness points i.e.

(i) the value δ∗ := δ(C1, C2),

(ii) a pair of points (p, q), s.t. δ∗ = δ(p, q),

where δ denotes the EUCLIDEAN distance function between two
points or set of points respectively.



Closest Points Between Faces

Let F1 and F2 be disjoint faces of Quadratic Complexes that are
embedded on the quadratic surfaces Q1 and Q2, where

Q1 := {x |xT Ax + 2aT x + a0 = 0},

Q2 := {y |yT By + 2bT y + b0 = 0}.

If (p1, p2) is a pair of closest points between F1 and F2, then either

(i) (p1, p2) is an extremum of the quadratic distance function
between Q1 and Q2 i.e. there are α, β ∈ R, α, β 6= 0 s.t.

n(p1) = α(p2 − p1) n(p2) = β(p1 − p2),

where n(pi) denotes the normal of Qi in pi, or

(ii) p1, or p2 lies on the boundary of the face F1 or F2, respectively.



Q1

Q2

Q1

Q2

f1 ∩ f2 = ∅: case (i). f1 ∩ f2 6= ∅: case (ii).

Q1

Q2

f1 ∩ f2 6= ∅: Precondition violated.



A Generic Algorithm

Input: Entities E1 and E2 of type face, edge or vertex.
Output: δ(E1, E2) and a pair of closest points (p

1
, p

2
).

ENTITYDISTANCE(E1 , E2)
(1)

[

isDisjoint, (p
1
, p

2
)
]

← INTERSECT(E1, E2)

(2) if isDisjoint = false

(3) return
[

0, (p
1
, p

2
)
]

(4) δG ←∞

(5) while
[

δ, (q
1
, q

2
)
]

← EXTREMA(E1, E2)

(6) if (q
1
∈ E1)and (q

2
∈ E2)

(7) if δ < δG

(8) δG ← δ, (p
1
, p

2
)← (q

1
, q

2
)

(9) if E1 is not a vertex
(10) foreach subentity E of E1

(11)
[

δ, (q
1
, q

2
)
]

← ENTITYDISTANCE(E, E2)

(12) if δ < δG

(13) δG ← δ, (p
1
, p

2
)← (q

1
, q

2
)

(14) if E2 is not a vertex
(15) foreach subentity E of E2

(16)
[

δ, (q
1
, q

2
)
]

← ENTITYDISTANCE(E1, E)

(17) if δ < δG

(18) δG ← δ, (p
1
, p

2
)← (q

1
, q

2
)

(19) return
[

δG, (p
1
, p

2
)
]



Main Result

Theorem 1. The distance between two faces of quadratic
complexes can be computed by solving systems of univariate and
bivariate polynomials in which the degree of every variable is at
most 6. These systems can be solved by finding the roots of
univariate polynomials of degree at most 24.



Our Approach

Point−Curve

Curve−Curve

Point−Surface

Surface−Surface

Lagrange− Elimination
  Theory:   Algebraical

    Insight:

Univariate

Polynomials

to solveFactorization

Reducing to
univariate

Resultant
polynomial

Deriving
univariate /

bivariate
systems

Geometrical,
   formalism:

Curve−Surface



The Point-Surface Case

The LAGRANGE formalism for the point-surface problem, gives

L(x; α) = (x − p)2 + α(xT Ax + 2aT x + a0),

∂L(.)

∂x
= 0 ⇐⇒ α(Ax + a) = p − x,

∂L(.)

∂α
= 0 ⇐⇒ xT Ax + 2aT x + a0 = 0.

From the first LAGRANGE-condition, we can derive:

x = (E + αA)−1(p − αa) =: D−1
α pα.

Substituting x in the second equation gives the univariate system:

f(α) = pT
αDαADαpα + 2aT Dαpαa|Dα| + a0|Dα|

2 = 0.



Examples

f(α) = A1p
2
α1d

2
2d

2
3 + A2p

2
α2d

2
1d

2
3 + A3p

2
α3d

2
1d

2
2 + a0d

2
1d

2
2d

2
3 +

2(a1pα1d1d
2
2d

2
3 + a2pα2d

2
1d2d

2
3 + a3pα3d

2
1d

2
2d3) = 0

Central Surfaces:

Ellipsoid / Hyperboloid: a = 0 ⇒ pα = p

f(α) = A1p
2
1d

2
2d

2
3 + A2p

2
2d

2
1d

2
3 + A3p

2
3d

2
1d

2
2 + a0d

2
1d

2
2d

2
3 = 0

Non-Central Surfaces:

Paraboloids:
A3 = 0, a1 = a2 = 0, a0 = 0 ⇒ d3 = 1, pα1 = p1, pα2 = p2

f(α) = A1p
2
1d

2
2 + A2p

2
2d

2
1 + 2a3pα3d

2
1d

2
2 = 0



Summary: Point-Surface-Case

Point - Central Surface

Ellipsoid Hyperboloid Cone

6 6 4

Point - Non-Central Surface

Paraboloids Elliptical / Hyperbolical Parabolical

Cylinders Cylinder

5 4 3



The Curve-Surface Case

If we substitute p by the explicit representation of a conic, i.e.

P : p(t) = c + r(t)u + s(t)v.

then we get a third LAGRANGE-condition

∂L(.)

∂t
= 0 ⇐⇒ (x − p)T ∂p

∂t
= 0.

and in contrast to the point-surface case a bivariate system of
equations:

f(α, t) = pT
αDαADαpα + 2aT Dαpαa|Dα| + a0|Dα|

2 = 0,

g(α, t) =
(

Dαpα − |Dα|p
) ∂p

∂t
= 0.



Example: Central Surfaces

f(α, t) = A1p
2
1d

2
2d

2
3 + A2p

2
2d

2
1d

2
3 + A3p

2
3d

2
1d

2
2 + a0d

2
1d

2
2d

2
3 = 0,

g(α, t) = A1p1p
′

1d2d3 + A2p2p
′

2d1d3 + A3p3p
′

3d1d2 = 0.

Ellipse Hyperbola Parabola Line

r(t), s(t) 1−t2

1+t2
2t

1+t2
1+t2

1−t2
2t

1−t2
t t2 t 0

deg(f, α) 6 6 6 6

deg(f, t) 4 4 4 2

deg(f, α, t) 10 10 10 8

deg(g, α) 2 2 2 2

deg(g, t) 4 4 3 1

deg(g, α, t) 6 6 5 3



Factorization of the Resultant Polynomial I

Lemma 1. Let f = g = 0 be our system of equations, i.e.

f(α, t) = A1p
2
1d

2
2d

2
3 + A2p

2
2d

2
1d

2
3 + A3p

2
3d

2
1d

2
2 + a0d

2
1d

2
2d

2
3 = 0,

g(α, t) = A1p1p
′

1d2d3 + A2p2p
′

2d1d3 + A3p3p
′

3d1d2 = 0.

and let αi denote the root of di, i = 1, 2, 3. Then

(i) The pair (αi, ti) is a solution of the bivariate system for every ti

solving the equation pi = 0, i = 1, 2, 3,

(ii) If the curve is not a line, every αi is a root of multiplicity 4 in
Res(f, g, t) whereas every ti has multiplicity 2 in Res(f, g, α).



Factorization of the Resultant Polynomial II

Corollary 1. If the curve is not a line, the Resultant Polynomial can
be written as the following product:

Res(f, g, t) = hα

3
∏

i=1

d4
i = hα

3
∏

i=1

(α − αi)
4,

Res(f, g, α) = ht

3
∏

i=1

p2
i = ht

3
∏

i=1

(t − ti1)
2(t − ti2)

2.

where hα and ht are univariate polynomials of degree at most 20.



Summary: Curve - Central-Surface Case

Ellipsoid Hyperboloids Cone

Ellipse 20 20 12

Hyperbola 20 20 12

Parabola 14 14 8

Line 4 4 2



Summary: Curve - Non-Central-Surface Case

Paraboloids Elliptical / Hyperbolical Parabolical

Cylinders Cylinder

Ellipse 16 12 8

Hyperbola 16 12 8

Parabola 11 8 5

Line 3 2 1



The Surface-Surface Case

By setting up the LAGRANGE formalism for the problem

min (x − y)2, x ∈ Q1, y ∈ Q2

we get the LAGRANGE function L and -conditions (i), . . . , (iv):

L(x, y; α, β) = (x − y)2 + α(xT Ax + 2aT x + a0)

+ β(yT By + 2bT y + b0)

(i) ∂ L(.)
∂x = 0 ⇐⇒ α(Ax + a) = y − x

(ii) ∂ L(.)
∂y = 0 ⇐⇒ β(By + b) = x − y

(iii) ∂ L(.)
∂α

= 0 ⇐⇒ xT Ax + 2aT x + a0 = 0

(iv) ∂ L(.)
∂β

= 0 ⇐⇒ yT By + 2bT y + b0 = 0



Solving The Lagrange System

By setting λ := 1/α and µ := 1/β we can derive from (i) and (ii):

x = −(BA + λB + µA)−1(Ba + λb + µa) =: −
Cλ,µ

|Cλ,µ|
cB,

y = −(AB + λB + µA)−1(Ab + λb + µa) =: −
C

T

λ,µ

|Cλ,µ|
cA,

where Cλ,µ denotes the adjoint and |Cλ,µ| the determinant of Cλ,µ.

Substituting x and y in (iii) and (iv) we get the system:

f(λ, µ) = cT
BC

T

λ,µACλ,µcB − 2|Cλ,µ|a
T Cλ,µcB + a0|Cλ,µ|

2 = 0,

g(λ, µ) = cT
ACλ,µBC

T

λ,µcA − 2|Cλ,µ|b
T C

T

λ,µcA + b0|Cλ,µ|
2 = 0,



The Inverse of Cλ,µ

Proposition 1. The adjoint and determinant of
Cλ,µ = BA + λB + µA is given by

Cλ,µ = Bλ2 + Aµ2 + T ABλ + AT Bµ + (T BT A − T AB)λµ + AB,

|Cλ,µ| = |B|λ3 + |A|µ3 + |B|tr(A)λ2 + |A|tr(B)µ2 +

|B|tr(A)λ + |A|tr(B)µ + tr(BA)λ2µ + tr(AB)λµ2 +
(

tr(A)tr(B) − tr(AB)
)

λµ + |A||B|,

where T M := tr(M)E − M for a matrix M ∈ R
3×3.

Corollary 2. The polynomials f and g have degree 6 in λ as well
as µ. Moreover the total degree of f and g is also 6.

Corollary 3. (Bezout): The degree of Res(f, g) is at most 36.



Factorization of the Resultant Polynomial

Conjecture 1. Let f = g = 0 be our system of polynomial
equations, i.e.

f(λ, µ) = cT
BC

T

λ,µACλ,µcB − 2|Cλ,µ|a
T Cλ,µcB + a0|Cλ,µ|

2 = 0,

g(λ, µ) = cT
ACλ,µBC

T

λ,µcA − 2|Cλ,µ|b
T C

T

λ,µcA + b0|Cλ,µ|
2 = 0,

and the system h be defined as follows:

h(λ, µ) := (h1, h2, h3)
T = Cλ,µcB − C

T

λ,µcA = 0.

Then the common roots of the polynomials rij := Res(hi, hj),
1 ≤ i < j ≤ 3, define a polynomial p that divides Res(f, g).

Remark: Sufficient to solve p and Res(f, g)/p of degree ≤ 24.



Tangential Intersection Points

Observation 1. The tangential intersection points between Q1 and
Q2 do fullfill the LAGRANGE conditions (i), . . . , (iv).

We conject that that they can be determined by setting x = y, i.e.
by solving the following bivariate system:

h(λ, µ) = Cλ,µcB − C
T

λ,µcA

= (|B|a − ABb)λ2 + (BAa − |A|b)µ2+

(|B|T Aa − T ABb)λ + (T BAa − |A|T Bb)µ+

(T ABa − T BAb)λµ + |B|Aa − |A|Bb.



Summary: Surface-Surface Case

Central Surfaces Non-Central Surfaces

a0 6= 0 a0 = 0 a 6= 0 a = 0 rgA = 1

a0 6= 0 24 12 18 12 8

a0 = 0 4 8 4 2

a 6= 0 13 8 5

a = 0 4 2



The Point-Curve Case

W.l.o.g. we can assume that the conic Q is embedded on the
x1-x2-plane and centered around the origin, i.e.

Q : q(t) = r(t)u + s(t)v, uT v = 0.

Projecting the query point p onto the same plane yields a
2-D problem:

min
t

(p − r(t)u − s(t)v)2.

Setting the derivative of the distance function equal to zero, gives

f(t) = rr′u2 + ss′v2 − r′pT u − s′pT v = 0,

with r′ ≡ d r
d t

and s′ ≡ d s
d t

.



The Curve-Curve Case

Given two conics P and Q, i.e.

P : p(t) = r1(t1)u1 + s1(t1)v1, uT
1 v1 = 0,

Q : q(t) = c2 + r2(t2)u2 + s2(t2)v2, uT
2 v2 = 0.

The partial derivatives of δ2(t1, t2) = (q(t2) − p(t1))
2 yield the

following system of bivariate equations:

f(t1, t2) = [q(t2) − p(t1)]
T

[

−
∂ r1

∂ t1
u1 −

∂ s1

∂ t1
v1

]

= 0,

g(t1, t2) = [q(t2) − p(t1)]
T

[

∂ r2

∂ t2
u2 +

∂ s2

∂ t2
v2

]

= 0.



Example: Distance Between Two Ellipses

Proposition 2. The distance between two ellipses can be
computed by solving polynomials of degree at most 16.

Proof. If P and Q are both ellipses, we can write our conditions as:

f(t1, t2) = (1 + t21)f1(t1, t2) + (1 + t22)f2(t1)

= (t1 + i)(t1 − i)f1(t1, t2) + (t2 + i)(t2 − i)f2(t1),

g(t1, t2) = (1 + t21)g1(t2) + (1 + t22)g2(t1, t2)

= (t1 + i)(t1 − i)g1(t2) + (t2 + i)(t2 − i)g2(t1, t2),

with polynomials fi and gi, i = 1, 2, of degrees at most 2 in t1 and
t2. Since every (ξ1, ξ2) ∈ {−i, i}2 solves the bivariate system,
(1 + t21)

2 is a factor of Res(f, g, t2), whose degree is bounded by 20
(mixed-volume function).



Summary: Curve-Curve Case

Ellipse Hyberbola Parabola Line

Ellipse 16 16 12 4

Hyperbola 16 12 4

Parabola 9 3

Line 1



Natural Conics, Quadrics and the Torus

Natural Conics: Lines, Circles

Natural Quadrics: Planes, Spheres, Cylinders

Theorem 2. The distance between two faces embedded on
natural quadrics or the torus and trimmend by natural conics can
be computed by solving univariate polynomials of degree at most 8.


