
Efficient Distance Computation for Quadratic Curves and Surfaces

Christian Lennerz Elmar Schömer
Max-Planck-Institute for Computer Science

66123 Saarbrücken, Germany
{lennerz, schoemer}@mpi-sb.mpg.de

Abstract

Virtual prototyping and assembly planning require phys-
ically based simulation techniques. In this setting the rele-
vant objects are mostly mechanical parts, designed in CAD-
programs. When exported to the prototyping and planning
systems, curved parts are approximated by large polygo-
nal models, thus confronting the simulation algorithms with
high complexity. Algorithms for collision detection in par-
ticular are a bottleneck of efficiency and suffer from accu-
racy and robustness problems. To overcome these problems,
our algorithm directly operates on the original CAD-data.
This approach reduces the input complexity and avoids ac-
curacy problems due to approximation errors. We present
an efficient algorithm for computing the distance between
patches of quadratic surfaces trimmed by quadratic curves.
The distance calculation problem is reduced to the problem
of solving univariate polynomials of a degree of at most 24.
Moreover, we will identify an important subclass for which
the degree of the polynomials is bounded by 8.

1. Introduction

During the past few years an increasing interest in vir-
tual reality (VR) techniques could be observed. Virtual
reality plays an increasingly important part in social and
business life, ranging from entertainment and education to
VR-based training methods and numerous industrial ap-
plications. However, the ‘classical’ challenges that come
from concepts like virtual prototyping and assembly plan-
ning still represent strong drivers for the development of
VR-techniques.

To evaluate industrial prototypes and assembly pro-
cesses, virtual environments have to simulate physical be-
havior. Particularly collisions between moving objects must
be detected and resolved. Robustness and efficiency of such
a simulation heavily depend on the quality of the collision
detection algorithm. Dynamic collision detection routines
are required in this context. They identify the earliest time

of collision in a given time interval and return the touching
pair of objects. In contrast to this technique, static detec-
tion algorithms only decide whether two objects intersect at
a given point in time. Since they check discrete time frames
they, however, cannot guarantee to find the earliest contact.

In [9] a framework is developed in which static distance
computation algorithms can be used to design dynamic de-
tection routines. The basic idea is that information about the
distance and dynamic states of all objects provides lower
bounds on the earliest time of collision.

The problem of distance computation has been well stud-
ied in the past for polyhedral objects, e.g. [5, 8, 3], but only
little effort has spent on objects with curved surfaces [11].
There are two reasons for this situation. First, a polygo-
nal representation is not considered a true restriction since
real objects can be approximated arbitrarily precisely by a
polyhedron. The second reason is the fact that the basic al-
gorithms and predicates can be implemented robustly and
very efficiently on polygons.

However, one has to consider that there is a trade-off be-
tween the accuracy of the approximation and the efficiency
of the distance computation. On the one hand, precise ap-
proximations increase the complexity of the boundary rep-
resentation and can affect the running time of the algorithm
disproportionately. On the other hand, a small number of
polygons compromises the quality or even the correctness
of the simulation. Our considerations therefore raise the
question, whether or not it is worth to handle curved objects
directly. It means that one has to spend more effort on the
basic routines computing the distance between two patches,
but can profit from higher accuracy and a smaller number
of faces.

In this paper we present an efficient algorithm for
computing the distance between so-called ‘quadratic com-
plexes’. These are generalized polyhedra where the bound-
ary consists of quadratic surface patches trimmed by
quadratic curves. This class of surfaces plays an important
part in designing mechanical parts and represents a set of
modeling primitives provided by common CAD-systems.
We reduce the distance calculation problem to the prob-

Central Surfaces: det(A) 6= 0

Ellipsoids /
Hyperboloids

a = 0 a0 6= 0

Cone a = 0 a0 = 0

Non-Central Surfaces: det(A) = 0

Paraboloids A3 = 0 a3 6= 0 a0 = 0

Ellipt. /Hyperbol.
Cylinder

A3 = 0 a = 0 a0 6= 0

Parabol. Cylinder A1 = A3 = 0 a1 6= 0 a0 = 0

Table 1. Normal Forms of Quadratic Surfaces.

lem of solving univariate polynomial equations. For gen-
eral quadrics we show that the degrees of the polynomials
are bounded by 24. We have, however, identified an im-
portant subclass, the so-called natural quadrics, for which
distance computation queries only require solving univari-
ate polynomials of a degree of at most 8. We will also see
that this upper bound is strict.

2. Quadratic Complexes and Extensions

Rigid bodies are usually modeled as polyhedra and are
represented by topological and geometrical descriptions of
their boundaries. Thereby faces are embedded on planes
and edges are given by line segments. Quadratic complexes
can be considered as the most natural generalization of this
polyhedral model with respect to a curved boundary repre-
sentation. The faces of a quadratic complex are geometri-
cally described by quadratic surfaces (quadrics) with edges
represented by quadratic curves (conics).

A quadratic surface is implicitly given by an algebraic
equation of degree 2:

{x ∈ R
3 |xT Ax + 2aT x + a0 = 0}, (1)

for a vector a ∈ R
3 and a symmetric matrix A ∈ R

3×3.
Table 1 gives an overview over the so-called ‘normal forms’
(except from some degenerate cases), providing a classifi-
cation that we will use in this paper. Typical examples of
quadratic surfaces are shown in figure 1.

A quadratic curve is explicitly given as the following
point set:

{p ∈ R
3 |p = c + r(t)u + s(t)v}, (2)

where (r, s) ∈ {(sin, cos), (sinh, cosh), (id, 0), (id, id2)}
and u,v ∈ R

3 with uT v = 0.
Hence, conics are ellipses, hyperbolas, lines or parabolas.

We will also consider a subset of quadrics, the so-called
‘natural quadrics’. This class consists of the plane, the

–10 –5 5 10

x2

–10

–5

5

10

x1

–10

–5

5

10

x2
–10–5510

x1

–10

–5

5

10

–10
–5

5
10

x2

–10
–5

5
10

x1

–10

–5

5

10

–10
–5

5
10

x2

–10
–5

5
10

x1

–10

–5

5

10

–10
–5

5
10

x2

–10
–5

5
10

x1

Sphere Ellipsoid Cone One-Sheet- Two-Sheet

Hyperboloid Hyperboloid

–10

–5

5

10

–10
–5

5
10

x2

–10
–5

5
10

x1

–10

–5

5

10

–10

–5

5

10

x2
–10–5510

x1
–10

–5

5

10–10

–5

5

10

x2
–10–5510

x1

Elliptic Hyperbolic Cylinder Parabolic Hyperbolic

Paraboloid Paraboloid Cylinder Cylinder

Figure 1. Typical examples of Quadratic Sur-
faces.

sphere, the cylinder and the circular cone. Analogously the
line and the circle form the set of ‘natural conics’. Quadratic
complexes with faces that are embedded on natural quadrics
and trimmed by natural conics are consequently called ‘nat-
ural quadratic complexes’.

Due to its importance in CAD it seems reasonable to ex-
tend the class of quadrics by the torus, which can be implic-
itly described by a polynomial of degree 4.

However, the set of quadratic complexes is not closed un-
der Boolean operations, since the intersection curves cannot
always be represented by quadratic curves.

3. The Distance Computation Problem

To get a precise mathematical formulation of the prob-
lem, we consider a quadratic complex as a non-empty, com-
pact and connected set of points. The Euclidean distance δ
between two points p and q can be extended to arbitrary
point sets P and Q in a natural way:

δ(P,Q) := inf{δ(p, q)|p ∈ P, q ∈ Q}. (3)

From a practical point of view it makes sense to consider the
quadratic distance function δ2, since in many cases square
roots can be eliminated by this monotonous transformation.
Apart from the (quadratic) distance value we request a pair
of closest points as witness of the distance minimum be-
tween both quadratic complexes.

Definition 1. Given two quadratic complexes C1, C2 at a
given point and orientation, the distance computation prob-

2

lem is to determine the global minimum of the distance func-
tion δ between the respective point sets, i.e.

(i) the value δ∗ := δ(C1,C2),

(ii) a pair of points (p, q), s.t. δ∗ = δ(p, q).

To compute the distance minimum, we can restrict our-
selves to the boundaries that are described by the sets of
faces. The next section consequently deals with closest
points between quadratic surfaces.

4. Closest Points Between Faces

The basic problem is to determine the distance between
two faces, that are – from a geometrical point of view –
trimmed patches of quadratic surfaces Q1 and Q2:

Q1 := {x |xT Ax + 2aT x + a0 = 0},

Q2 := {y |yT By + 2bT y + b0 = 0}.

Let us first assume that the considered face pair is disjoint.
If it is not, the distance value δ is zero and we are done. As
long as we consider quadratic surfaces this condition can
be easily checked by solving polynomials of a degree of
at most 4 [7, 10]. Extending this class of surfaces by the
torus, the former result still holds with the only exception
that the intersection problem between a torus and a non-
natural quadratic surface requires the solution of a higher
degree polynomial [6, 10].

The disjointness assumption allows us to characterize a
pair of closest points between two faces:

Theorem 1. Let f1 and f2 be disjoint faces of quadratic
complexes that are embedded on the quadratic surfaces Q1

and Q2. If (p1,p2) is a pair of closest points between f1

and f2, then either

(i) (p1,p2) is an extremum of the distance function be-
tween Q1 and Q2, i.e. there are λ, µ ∈ R, λ, µ 6= 0,
s.t.

n(p1) = λ(p2 − p1) n(p2) = µ(p1 − p2),

where n(pi) denotes the normal of Qi in pi, or

(ii) p1 or p2 lies on the boundary of the face f1 or f2,
respectively.

Proof. If neither p1 ∈ f1 nor p2 ∈ f2 are located at the
boundary of the respective face, then both points form a lo-
cal extremum of the distance function between Q1 and Q2.
Since both faces do not intersect, p1 and p2 are points for
which the interpolating line is perpendicular to both sur-
faces in the respective points. This observation can be for-
mally proven by setting up the LAGRANGE-function L for

Q1

Q2

Q1

Q2

f1 ∩ f2 = ∅: case (i). f1 ∩ f2 = ∅: case (ii).

Q1

Q2

f1 ∩ f2 6= ∅: Precondition violated.

Figure 2. Illustration of Theorem 1.

the problem min(x− y)2, x ∈ Q1 y ∈ Q2:

L(x,y;α, β) = (x− y)2 + α(xT Ax + 2aT x + a0)

+β(yT By + 2bT y + b0)

and the following LAGRANGE-conditions:

∂L(.)/∂x = 0 ⇔ α(Ax + a) = y − x, (4)

∂L(.)/∂y = 0 ⇔ β(By + b) = x− y, (5)

∂L(.)/∂α = 0 ⇔ xT Ax + 2aT x + a0 = 0, (6)

∂L(.)/∂β = 0 ⇔ yT By + 2bT y + b0 = 0, (7)

where n(x) ‖ Ax + a and n(y) ‖ By + b.
Figure 2 provides a 2-dimensional illustration of both

cases and the necessary precondition. Closest points are
marked by enclosing squares whereas the points of case (i),
forming a distance extremum between Q1 and Q2, are con-
nected by their interpolating line segment.

4.1. A Generic Algorithm

Theorem 1 suggests a simple recursive procedure (cf. al-
gorithm 3) for computing the distance between two faces.
Arguments of the algorithm are the entities of the boundary
representation, i.e. a face, an edge or a vertex. When called
on two faces, the algorithm first checks the disjointness con-
dition by the routine INTERSECT. If the faces collide the
distance value is set to zero and a pair of points witness-
ing the intersection is returned. Otherwise, all point pairs
representing extrema of the distance function between both
surfaces are computed. To do so, the subroutine EXTREMA

enumerates all pairs (p1,p2) that fulfill the conditions of
case (i) for the untrimmed entities. In the variable δG we

3

Input: Entities E1 and E2 of type face, edge or vertex.
Output: δ(E1, E2) and a pair of closest points (p1,p2).
ENTITYDISTANCE(E1, E2)
(1)

[

isDisjoint, (p1,p2)
]

← INTERSECT(E1, E2)
(2) if isDisjoint = false
(3) return

[

0, (p1,p2)
]

(4) δG ←∞
(5) while

[

δ, (q1, q2)
]

← EXTREMA(E1, E2)
(6) if (q1 ∈ E1)and (q2 ∈ E2)
(7) if δ < δG

(8) δG ← δ, (p1,p2)← (q1, q2)
(9) foreach subentity E of E1

(10)
[

δ, (q1, q2)
]

← ENTITYDISTANCE(E,E2)
(11) if δ < δG

(12) δG ← δ, (p1,p2)← (q1, q2)
(13) foreach subentity E of E2

(14)
[

δ, (q1, q2)
]

← ENTITYDISTANCE(E1, E)
(15) if δ < δG

(16) δG ← δ, (p1,p2)← (q1, q2)
(17) return

[

δG, (p1,p2)
]

Figure 3. A generic algorithm for comput-
ing the distance between two entities of the
boundary description.

compute the minimal distance of all these ’extremal’ points
that lie inside the trimmed patches. However, the theorem
also states that the closest points can also be found at the
boundary of at least one of the patches (case(ii)). There-
fore two recursive calls to the distance procedure must be
executed, with the entity E1 in the first call and the entity
E2 in the second call restricted to their boundaries ∂E1 and
∂E2, respectively. In our algorithm the elements of ∂Ei are
called ‘subentities’ of Ei, i = 1, 2. If the original argu-
ments of the procedure were two faces, then the recursive
calls would reciprocally determine the distance between the
edges of one face and the other patch. The recursion ends
if case (i) holds for a pair of points computed by procedure
EXTREMA. This happens at the latest if the procedure is
called on two vertices.

Algorithm 3 represents an elegant high-level formula-
tion of the whole procedure. A practical implementation,
however, must prevent repeated distance computation be-
tween identical pairs of entities. Moreover, one can avoid
the recursive calls on the boundary elements when both the
trimmed as well as the untrimmed entities do not intersect
and the extremal points with minimal distance between the
untrimmed entities lie inside the trimmed patches.

4.2. Degree Complexity of the Polynomial Systems

Procedure EXTREMA solves the central task of algo-
rithm 3. It identifies the local extrema of the distance func-
tion between untrimmed entities of the boundary represen-
tation. In the next sections we will prove the following re-
sult which gives an upper bound on the degree complexity
of the systems that have to be solved.

Theorem 2. The distance between two faces of quadratic
complexes can be computed by solving systems of univari-
ate and bivariate polynomials in which the degree of every
variable is 6 at most. These systems can be solved by find-
ing the roots of univariate polynomials of a degree of at
most 24.

4.3. The Surface-Surface Case

In this section we will set up a system of bivariate poly-
nomial equations that gives the local extrema of the distance
function in the case of two quadratic surfaces.

Solving The Lagrange System

In the proof of theorem 1 we have seen that the perpendic-
ularity conditions of case (i) are a result of setting up the
LAGRANGE formalism for the distance minimization prob-
lem between quadrics. By setting λ := 1/α and µ := 1/β
we can derive from conditions (4) and (5):

Cλ,µx = −(Ba + λb + µa), (8)

CT
λ,µy = −(Ab + λb + µa), (9)

with Cλ,µ := BA + λB + µA.
If we solve these equations for x and y, we get:

x = −C−1

λ,µcB y = −C−1

λ,µ

T
cA,

with cB := Ba + λb + µa and cA := Ab + λb + µa.
Substituting the expressions for x and y in (6) and (7) gives
the following system of polynomial equations:

f(λ, µ) = cT
BC

T

λ,µACλ,µcB − (10)

2|Cλ,µ|a
T Cλ,µcB + a0|Cλ,µ|

2 = 0,

g(λ, µ) = cT
ACλ,µBC

T

λ,µcA − (11)

2|Cλ,µ|b
T C

T

λ,µcA + b0|Cλ,µ|
2 = 0,

where Cλ,µ denotes the adjoint and |Cλ,µ| the determinant
of Cλ,µ.

4

The Inverse of Cλ,µ

In order to solve the given system, we must express the in-
verse of Cλ,µ as a bivariate matrix polynomial in λ and µ.
The following proposition shows how the adjoint as well
as the determinant can be written in terms of matrix coeffi-
cients in A and B.

Proposition 1. The adjoint and determinant of
Cλ,µ = BA + λB + µA is given by

Cλ,µ = Bλ2 + Aµ2 + T ABλ + AT Bµ +

(T BT A − T AB)λµ + A B,

|Cλ,µ| = |B|λ3 + |A|µ3 + |A||B|+

|B|tr(A)λ2 + |A|tr(B)µ2 +

|B|tr(A)λ + |A|tr(B)µ +

tr(BA)λ2µ + tr(AB)λµ2 +

(tr(A)tr(B)− tr(A B))λµ,

where T M := tr(M)E −M for a matrix M ∈ R
3×3.

Proof. We start with a simple problem, asking for the in-
verse of Gλ := D + λC. Since the characteristic polyno-
mial of a matrix M ∈ R

3×3 is given by

|M − λE| = −λ3 + tr(M)λ2 − tr(M)λ + |M |.

Setting M := −DC−1 we get

|Gλ| = −|C||M − λE|

= |C|λ3 + tr(DC)λ2 + tr(CD)λ + |D|. (12)

Now one can easily verify that the adjoint can be written as
the following matrix polynomial:

Gλ = Cλ2 + (T DT C − T CD)λ + D. (13)

The determinant and the adjoint of Cλ,µ are the result of
setting D := BA+λB, C := A and recursively applying
rule (12) and (13).

The theorem shows that the adjoint of Cλ,µ is a bivariate
matrix polynomial of degree 2 in λ and µ. Since the degree
of the determinant polynomial is 3, we can conclude that
both polynomials have degree 6 in λ and µ.

Central Surfaces

For central surfaces the vector a vanishes in normal form.
However, the degree of f and g does not decrease in this
special case since it is still determined by |Cλ,µ|

2. To an-
alyze the complexity of solving this bivariate system, one
first observes that both polynomials are sparse, having a to-
tal degree of 6. Hence, it follows from the BEZOUT bound
that over C

2 the number of complex roots is at most 36.

These roots can be found with the help of elimination meth-
ods. Eliminating one variable and solving the univariate
resultant polynomial Res(f, g) give the bivariate solutions
projected onto the non-eliminated variable. Since the lead-
ing coefficients in λ as well as in µ are constants, the degree
of Res(f, g) is exactly the number of bivariate roots and
therefore bounded by 36.

However, it is not necessary to solve this polynomial di-
rectly. The following lemma will show that, in our setting,
the resultant is always the product of two polynomials of a
lower degree. Solving the latter polynomials improves nu-
merical stability as well as computational efficiency.

Lemma 1. Let f, g be the polynomials given in (10), (11)
and the system h defined as follows:

h(λ, µ) := (h1, h2, h3)
T = Cλ,µcB = 0.

Then the roots of h = 0 are also solutions to f = g = 0.

Proof. W.l.o.g. we can assume that the quadric given in nor-
mal form does not contain the origin, i.e. x 6= 0. Now
let us consider values of λ and µ for which h vanishes.
By multiplying equation (8) with Cλ,µ from the lefthand
side, we get |Cλ,µ|x = −Cλ,µcB = 0 and therefore
|Cλ,µ| = 0. Applying the same transformation to (9) gives

|Cλ,µ|y = −C
T

λ,µcA = 0. Since the determinant vanishes,

the same must hold for C
T

λ,µcA. Now it is easy to see that
every term in f and g becomes zero and we can conclude
that the solutions of h solve the equations f and g.

The system h = 0 consists of three polynomial equa-
tions hi = 0, i = 1, 2, 3, that have degree 2 in λ as well
as µ. For every hi, hj with 1 ≤ i < j ≤ 3, it holds that
the resultant rij = Res(hi, hj) is a polynomial of degree 3
in the non-eliminated variable. The three polynomials rij

are identical up to a constant factor and by Lemma 1 we
know that every root of rij solves the resultant polynomial
of the system f = g = 0. Moreover, one can show that
the multiplicity of these roots is 4. Hence, we have found
a polynomial of degree 12, i.e. r4

ij , that divides Res(f, g).
These considerations prove that the closest points between
two central surfaces can be determined by solving polyno-
mials of a degree of at most 24.

If Q1 is a cone and Q2 a general central surface then f
simplifies to a polynomial of degree 4 in λ as well as µ.
Hence, the resultant polynomial is of a degree of at most 24
and can be written as the product of two polynomials of
degree 12. In the case of two cones we analogously observe
that the roots of the resultant polynomial can be determined
by solving polynomials of a maximum degree 4.

Non-Central Surfaces

In the case of non-central surfaces we have |A| = |B| = 0
and therefore |Cλ,µ| simplifies to a quadratic polynomial

5

in both, λ and µ. This observation should give an intu-
ition why the polynomial systems for non-central surfaces
are less complex than in the case of central surfaces.

If Q1 and Q2 are both paraboloids, then f and g become
bivariate polynomials of degree 5 in λ and µ. Since the to-
tal degree is also 5 in both polynomials, the resultant is a
degree 25 polynomial in the worst case. However, our con-
siderations above have shown that Res(f, g) can be factor-
ized into two lower degree polynomials. Since the equations
hi = 0, i = 1, 2, 3, do not change in degree compared to
the general case, one of the two factors is a polynomial of a
degree of at most 12 and the other of a degree of at most 13.

For elliptic and hyperbolic cylinders f and g collapse to
degree 2 polynomials in λ and µ. The resultant is therefore
a quartic polynomial that cannot be factorized as in previous
cases. The reason is that h = 0 has only trivial solutions
λ = 0 or µ = 0 that can be eliminated from f and g before
computing the resultant.

At this point we will omit the cases where Q1 is a cen-
tral surface and Q2 not. As one would expect, the degrees
of the polynomials are lower than in the case of central sur-
faces, but higher compared to the situation where only non-
central surfaces are involved. The results of this section are
recorded in the following table:

Central Surfaces Non-Central Surfaces
a0 6=0 a0 =0 a 6=0 a=0 rgA=1

a0 6=0 24 12 18 12 8
a0 =0 4 8 4 2
a 6=0 13 8 5
a=0 4 2

4.4. The Point-Surface Case

As in the section before we will start by setting up
the LAGRANGE-formalism for the respective distance min-
imization problem. W.l.o.g. we assume that the surface is
given in normal form. Let p denote the (transformed) query
point. Then the LAGRANGE-function L is given by

L(x;α) = (x− p)2 + α(xT Ax + 2aT x + a0).

The partial derivatives with respect to x and α yield the
LAGRANGE-conditions:

∂L(.)

∂x
= 0 ⇐⇒ α(Ax + a) = p− x, (14)

∂L(.)

∂α
= 0 ⇐⇒ xT Ax + 2aT x + a0 = 0. (15)

Again the first equation reflects the geometric intuition that
the interpolating line through p and x is parallel to the sur-
face normal in x. It can be transformed into

x = (E + αA)−1(p− αa). (16)

Substituting x in (15) we get the univariate system:

f(α) = (p− αa)T DαADα(p− αa) + (17)

2aT Dα(p− αa)|Dα|+ a0|Dα|
2 = 0,

with Dα := E + αA.
From equations (12) and (13), it follows that the adjoint

of Dα is a quadratic polynomial in α, whereas its determi-
nant is of degree 3:

Dα = Aα2 + T Aα + E

= diag[d2d3, d1d3, d1d2],

|Dα| = |A|α3 + tr(A)α2 + tr(A)α + 1

= d1d2d3,

where di := 1 + αAi and Ai denotes the ith diagonal ele-
ment of A.

Expanding both quantities in (17) gives a degree 6 poly-
nomial of the form

f(α) = A1p
2
α1d

2
2d

2
3 + A2p

2
α2d

2
1d

2
3 + A3p

2
α3d

2
1d

2
2+ (18)

2(a1pα1d1d
2
2d

2
3 + a2pα2d

2
1d2d

2
3 + a3pα3d

2
1d

2
2d3)+

a0d
2
1d

2
2d

2
3

with pα := p− αa.

Central Surfaces

If we consider central faces, the vector a is equal to 0 and
therefore f simplifies to

f(α) = A1p
2
1d

2
2d

2
3 + A2p

2
2d

2
1d

2
3 + A3p

2
3d

2
1d

2
2 + a0d

2
1d

2
2d

2
3.

The degree of this polynomial is still determined by the term
d2
1d

2
2d

2
3 and therefore does not decrease compared with the

general case. However, if we additionally assume that a0

vanishes, i.e. if we are dealing with a cone, then f becomes
a polynomial of degree 4 in α:

f(α) = A1p
2
1d

2
2d

2
3 + A2p

2
2d

2
1d

2
3 + A3p

2
3d

2
1d

2
2. (19)

Non-Central Surfaces

In the case of non-central surfaces we first analyze the sit-
uation where a = 0, i.e. where the given face is embedded
on an elliptic or hyperbolic cylinder. Since A3 is equal to
zero, d3 becomes 1 and in comparison to (18) the degree of
the polynomial f decreases to 4:

f(α) = A1p
2
1d

2
2 + A2p

2
2d

2
1 + a0d

2
1d

2
2.

If the cylinder is parabolic, i.e. A1=A3=a0=0, a16=0, then
d1 as well as d3 are constants and we obtain the following
polynomial of degree 3 in α:

f(α) = a1pα1d
2
2. (20)

6

Finally we have to consider the case of paraboloids for
which a3 6= 0 and A3 as well as a0 vanish. Again d3 is
equal to 1, reducing the degree of f to 5.

f(α) = A1p
2
1d

2
2 + A2p

2
2d

2
1 + 2a3pα3d

2
1d

2
2. (21)

The following table summarizes our results in the point-
surface case:

Point - Central Surface
Ellipsoid Hyperboloid Cone

6 6 4

Point - Non-Central Surface
Paraboloids Elliptic / Hyperbolic Parabolic

Cylinders Cylinder

5 4 3

4.5. The Curve-Surface Case

In the former approach, the point p was considered a
constant, not a variable. To derive the system of polynomial
equations in the curve-surface case, we simply substitute p

by the explicit representation of quadratic curves.

P : p(t) = c + r(t)u + s(t)v.

The new variable t introduces a third LAGRANGE-condition

∂L(.)

∂t
= 0 ⇐⇒ (x− p)T ∂p

∂t
.

By substituting x according to (16), we get the condition:

g(α, t) :=
(

Dα(p− αa)− |Dα|p
) ∂p

∂t
= 0.

Expanding the polynomials Dα and |Dα| yields the second
equation of the system:

g(α, t) = p̃1p
′

1d2d3 + p̃2p
′

2d1d3 + p̃3p
′

3d1d2 = 0,

with p̃ := Ap + a and p′ :=
∂ p
∂ t

.

Central Surfaces

Let us first consider central surfaces for which a = 0. By
interpreting (18) as a polynomial in α and t we get the fol-
lowing system of bivariate polynomial equations:

f(α, t)=A1p
2
1d

2
2d

2
3 + A2p

2
2d

2
1d

2
3 + A3p

2
3d

2
1d

2
2+

a0d
2
1d

2
2d

2
3 = 0,

g(α, t)=A1p1p
′

1d2d3 + A2p2p
′

2d1d3 + A3p3p
′

3d1d2 = 0.

Whereas the degree in α is 6 for f and 2 for g, the de-
gree of t obviously depends on the curve involved. First we

use the following substitutions to rationally parameterize el-
lipses and hyperbolas:

r(t) =
1− t2

1 + t2
, s(t) =

2t

1 + t2
, (Ellipse) (22)

r(t) =
1 + t2

1− t2
, s(t) =

2t

1− t2
. (Hyperbola) (23)

To eliminate the denominators in pi, i = 1, 2, 3, we mul-
tiply f and g by (1 ± t2) and obtain a system of polyno-
mial equations with degree 4 in t. Since the total degree
of f and g is 10 and 6 respectively, the BEZOUT bound for
the degree of the resultant is 60. In contrast to the surface-
surface case, this value drastically overestimates the ac-
tual degree. Therefore we computed the so-called ‘mixed-
volume’ (MV (f, g)) [1], which – in the case of sparse poly-
nomials – leads to a better bound on the degree of the resul-
tant. For the given system f = g = 0 the mixed-volume
bound is tight indicating a degree of 32.

However, it is easy to observe that if the polynomial
equation di = 0 has a solution αi, then the vector (αi, ti)
is a solution of the bivariate system for every ti solving the
equation pi = 0, i = 1, 2, 3. Moreover, one can show that
every αi is a root of multiplicity 4 in Res(f, g, t), whereas
every ti has multiplicity 2 in Res(f, g, α). Hence Res(f, g)
can be written as the following product:

Res(f, g, t) = hα

3
∏

i=1

d4
i = hα

3
∏

i=1

(α− αi)
4,

Res(f, g, α) = ht

3
∏

i=1

p2
i = ht

3
∏

i=1

(t− ti1)
2(t− ti2)

2,

where hα and ht are univariate polynomials of a degree of
at most 20.

If P is a parabola, then g becomes a cubic polynomial in
t. Since r(t) = t and s(t) = t2, pi is quadratic and p′i is lin-
ear in t, leading to a degree 4 polynomial f and a degree 3
polynomial g. The mixed-volume of f and g decreases to 26
and therefore the degrees of the polynomials hα, ht to 14.
For the curve being a line, i.e. r(t) = t, s(t) = 0, the poly-
nomial f is quadratic in t and g turns out to be a linear func-
tion. The resultant polynomial also simplifies such that the
mixed-volume becomes 10. In this simple setting, however,
the roots αi, i = 1, 2, 3 have multiplicity 2 and therefore hα

and ht are polynomials of a degree of at most 4.
In the special case of a cone surface, f also becomes a

degree 4 polynomial in α, whereas the degree in t does not
change compared to the setting discussed above:

f(α, t)=A1p
2
1d

2
2d

2
3 + A2p

2
2d

2
1d

2
3 + A3p

2
3d

2
1d

2
2 = 0 (24)

g(α, t)=A1p1p
′

1d2d3 + A2p2p
′

2d1d3 + A3p3p
′

3d1d2 = 0.

Similar to the previous case, one can show that computing
the roots of the resultant requires solving univariate polyno-
mials of a degree of at most 12 (P: ellipse / hyperbola), 8 (P:

7

parabola) and 2 (P: line) respectively. The following table
gives an overview of the results described in this section:

Curve - Central Surface
Ellipsoid Hyperboloids Cone

Ellipse 20 20 12
Hyperbola 20 20 12
Parabola 14 14 8

Line 4 4 2

Non-Central Surfaces

For non-central sufaces with a = 0 and a0 6= 0, f remains a
bivariate polynomial of degree 6 in α, whereas g simplifies
to a linear function in α:

f(α, t) = A1p
2
1d

2
2 + A2p

2
2d

2
1 + a0d

2
1d

2
2 = 0,

g(α, t) = A1p1p
′

1d2 + A2p2p
′

2d1 = 0.

Since d3 = 1, we obtain the following factorization of the
resultant polynomial:

Res(f, g, t) = hα

2
∏

i=1

d4
i = hα

2
∏

i=1

(α− αi)
4,

Res(f, g, α) = ht

2
∏

i=1

p2
i = ht

2
∏

i=1

(t− ti1)
2(t− ti2)

2.

Moreover, we can see from the mixed-volume function that
the degree of the resultant polynomial is at most 20 (P: el-
lipse / hyperbola), 16 (P: parabola) and 8 (P: line) respec-
tively. Hence, the maximum degree of the univariate poly-
nomials to solve is 12, 8 or 2, depending on the type of the
curve.

In the case of a parabolic cylinder a no longer vanishes,
but A1, A3 as well as a0 are all zero. Therefore f becomes
a cubic and g a linear polynomial in α:

f(α, t) = a1pα1d
2
2 = 0,

g(α, t) = a1p
′

1d2 + A2p2p
′

2 = 0.

To compute the roots of the resultant polynomial one has
to solve polynomials of a degree of at most 8 (P: ellipse /
hyperbola), 5 (P: parabola) and 1 (P: line) respectively.

If the surface is an elliptic or hyperbolic paraboloid, we
have already seen (cf. (21)) that f is polynomial of degree 5
in α. It is easy to see that g also simplifies to a quadratic
polynomial in α:

f(α, t) = A1p
2
1d

2
2d+A2p

2
2d

2
1 + 2a3pα3d

2
1d

2
2 = 0,

g(α, t) = A1p1p
′

1d2 + A2p2p
′

2d1 + a3p
′

3d1d2 = 0.

Again our factorization shows that the degrees of the uni-
variate polynomials to solve are much lower than the de-
grees of the respective resultant polynomial.

Our considerations in this section are summarized in the
following table:

Curve - Non-Central Surface
Paraboloids Ellipt. / Hyperb. Parab.

Cylinders Cylinder

Ellipse 16 12 8
Hyperbola 16 12 8
Parabola 11 8 5

Line 3 2 1

4.6. The Point-Curve Case

To compute the distance between a point p and a
quadratic curve Q, we assume w.l.o.g. that Q is embedded
on the x1x2-plane and centered around the origin, i.e.

Q : q(t) = r(t)u + s(t)v, uT v = 0.

By considering the projection p of p onto the x1x2-plane,
the task is reduced to a 2-dimensional problem:

min
t

(p− r(t)u− s(t)v)2.

Setting the derivative of the distance function equal to zero
gives

f(t) = rr′u2 + ss′v2 − r′pT u− s′pT v = 0, (25)

with r′ ≡ d r
d t

and s′ ≡ d s
d t

. In the case of an ellipse, condi-
tion (25) is equivalent to the following polynomial equation
of degree 4 in t:

f(t) = pT vt4 + 2
[

pT u− (v2 − u2)
]

t3

−pT v + 2
[

pT u + (v2 − u2)
]

t2 = 0.

A similar result can be derived for the point-hyperbola prob-
lem.

If Q is a parabola, then the degree decreases and f be-
comes a cubic polynomial in t:

f(t) = 2v2t3 + (u2 − pT v)t− pT u = 0. (26)

In the case of a line, condition (25) simplifies to the follow-
ing linear equation:

f(t) = u2t− pT v = 0. (27)

The following table shows the maximum degrees of the uni-
variate polynomials to solve in the point-curve case:

Point - Curve

Ellipse Hyperbola Parabola Line
4 4 3 1

8

4.7. The Curve-Curve Case

The remaining case leads to the problem of computing
the distance between two quadratic curves. To simplify mat-
ters, we still assume that one curve is located as described
in 4.6, i.e.

P : p(t) = r1(t1)u1 + s1(t1)v1, uT
1 v1 = 0,

whereas the other curve is in arbitrary position and orienta-
tion:

Q : q(t) = c2 + r2(t2)u2 + s2(t2)v2, uT
2 v2 = 0.

The partial derivatives of the distance function δ2(t1, t2) =
(q(t2) − p(t1))

2 yield the following system of bivariate
equations:

[q(t2)− p(t1)]
T

[

−
∂ r1

∂ t1
u1 −

∂ s1

∂ t1
v1

]

= 0, (28)

[q(t2)− p(t1)]
T

[

∂ r2

∂ t2
u2 +

∂ s2

∂ t2
v2

]

= 0. (29)

If P and Q are both ellipses, then conditions (28)
and (29) can be written in the following manner:

f(t1, t2) = (1 + t21)f1(t1, t2) + (1 + t22)f2(t1), (30)

g(t1, t2) = (1 + t21)g1(t2) + (1 + t22)g2(t1, t2), (31)

where fi and gi, i = 1, 2, are polynomials of degrees at
most 2 in t1 and t2. This representation immediately shows
that every (ξ1, ξ2) ∈ {−i, i}2 solves the bivariate system.
Moreover, it follows that (1 + t21)

2 is a factor of the re-
sultant Res(f, g, t2). Since the mixed-volume of the sparse
polynomials f and g is 20, we can conclude that computing
the distance between two ellipses requires solving univari-
ate polynomials of a degree of at most 16.

The same result holds for the hyperbola-hyperbola- as
well as for the ellipse-hyperbola-problem. In both cases
one analogously observes that the degree 4 polynomial,
(1 − t21)

2 and (1 + t21)(1 − t21)
2 respectively, is a divisor

of Res(f, g, t2).
When considering two parabolas, one obtains polynomi-

als f and g, each having total degree 3. Therefore Res(f, g)
is a polynomial of degree 9 in the non-eliminated variable.

The case of two lines or a line and a parabola is also
straightforward, leading to a linear and cubic equation re-
spectively.

Setting up the bivariate system (28), (29) for P being
an ellipse or hyperbola and Q a line yields to polynomials
f and g that have a mixed-volume of 6. By considering f
and g to be polynomials in t2, it turns out that the leading
coefficient vanishes for t1 = ±i (P : ellipse) or t1 = ±1 (P :
hyperbola) in both polynomials. From the resultant theory

we have that Res(f, g, t2) also vanishes for these values and
the quadratic polynomial (1± t21) must be a factor.

Analogously one can show that in the ellipse-parabola-
as well as in the hyperbola-parabola-case the two high-
est coefficients of f and g vanish for t1 = ±i or t1 =
±1, respectively. Therefore the degree 16 polynomial
Res(f, g, t2) can be represented as the product of (1± t21)

2

and a univariate polynomial of degree 12 in t1. The fol-
lowing table gives an overview of the degree bounds in this
section:

Ellipse / Parabola LineCurve-Curve
Hyberbola

Ellipse / Hyperbola 16 12 4
Parabola 9 3

Line 1

4.8. Natural Quadrics, Conics and the Torus

Our statements so far hold for arbitrary quadratic curves
and surfaces. This class, however, contains very simple ge-
ometric objects for which the general results can be sub-
stantially improved. With the natural quadrics and conics
we have identified a set of special cases, which additionally
is of practical importance.

4.8.1 Natural Conics

Distance queries between points and ‘linear’ objects (lines,
planes) are standard problems in computational geometry
and computer graphics [2]. They involve simple linear sys-
tems that we will not discuss here.

Hence, the circle remains the only interesting natural
conic. Computing its distance to linear objects leads to
polynomial equations of a degree of at most 4. In the point-
circle case we can see from section 4.6 that computing the
closest points requires solving a quadratic polynomial.

The circle-plane case shows the same degree complex-
ity. We can rotate the coordinate system so that the plane is
given by x3 = 0. Then the distance between a point of the
circle p(φ) and the plane P is given as

δ(p(φ), P) = c3 + r(cos(φ)u3 + sin(φ)v3).

Minimizing δ over φ and applying the t-substitution
(cf. 4.5) on the derivative yields to a quadratic equation in t.

The circle-circle case is the most difficult one since it re-
quires the solutions of a polynomial of degree 8 [2]. More-
over, NEFF has shown that this is a lower bound on the de-
gree complexity if the arithmetical operations are restricted
to field operations and square roots [4].

4.8.2 Natural Quadrics and the Torus

Concerning the natural quadrics we first observe that the
cases involving spheres and cylinders are already solved

9

since they can be reduced to the case of lower dimensional
objects. The distance to a sphere is just the distance to its
center minus the radius. In the case of a circular cylinder
we can analogously restrict ourselves to its axis and finally
subtract the radius. The same argument holds for the torus
– although it is not a quadratic surface. Here, the distance
can be computed by considering its main circle.

Finally, we have to treat the case of a circular cone.
From (19) we know that the extrema of the distance func-
tion between a point and a general cone is given by:

f(α) = A1p
2
1d

2
2d

2
3 + A2p

2
2d

2
1d

2
3 + A3p

2
3d

2
1d

2
2 = 0. (32)

In the special case of a circular cone, we have A1 = A2 and
d1 = d2. Condition (32) therefore simplifies to a polyno-
mial equation of degree 2 in α:

f(α) = A1p
2
1d

2
3 + A1p

2
2d

2
3 + A3p

2
3d

2
1 = 0.

For the curve-cone problem we consider system (24). Ex-
ploiting the fact that the cone is circular, we get:

f(α, t) = A1p
2
1d

2
3 + A1p

2
2d

2
3 + A3p

2
3d

2
1 = 0,

g(α, t) = A1p1p
′

1d3 + A1p2p
′

2d3 + A3p3p
′

3d1 = 0.

For p being a line, the resultant of f and g is a polynomial
of degree 4 for which we know a divisor of degree 2 (cf. our
considerations in 4.5). In the case of a circle, the mixed-
volume of f and g is 12. Since we have already realized
that d4

3 is a factor of Res(f, g, t), we can restrict ourselves
to solving polynomials of a degree of at most 8.

The remaining case is the one in which two cones are
involved. For general cones we have seen in 4.3 that poly-
nomials of a degree of at most 4 must be solved to compute
the extrema of the distance function. In the special case of
two circular cones this bound cannot be improved.

Our considerations above prove the following theorem:

Theorem 3. The distance between two faces of natural
quadratic complexes can be computed by solving univari-
ate polynomials of a degree of at most 8.

5. Conclusions

In this paper we have presented an algorithm for compu-
ting the minimal distance between two patches of quadratic
surfaces bounded by quadratic curves. To find the closest
points on both patches, systems of univariate and bivari-
ate polynomial equations have to be solved. Though there
are numerical techniques for finding the solutions of mul-
tivariate systems directly, our experience has shown that
these methods either do not guarantee to find all roots of the
system (NEWTON method) or they are not efficient enough
(interval methods) to fulfill our real-time requirements. We

have therefore considered algebraic techniques that reduce
the multivariate root finding problem to the univariate case.
The degrees of the resulting polynomials are usually high
and hence elimination methods are often not appropriate in
the context of floating-point computations. However, we
could show that for all cases in which the degrees of the re-
sulting polynomials become critical, a factorization into two
lower degree polynomials can be found. Thereby one of the
polynomial factors is easy to solve because its roots are of
high multiplicity, whereas the other is of moderate degree
and can be solved using numerically stable techniques.

Since in most CAD-systems the intersection curve be-
tween two quadratic surfaces is represented by NURBS, we
will extend the set of trimming curves by this more com-
plex type. Then our object class can be considered to be
(approximately) closed under Boolean operations.

In a final step, we will speed up the overall algorithm
by setting up a bounding volume hierarchy that reduces the
number of distance computations between pairs of faces.

References

[1] J. Canny and I. Emiris. An efficient algorithm for the sparse
mixed resultant. In Proc. Intern. Symp.Applied Algebra, Al-
gebraic Algor. and Error-Corr. Codes, volume 263 of Lec-
ture Notes in Computer Science., pages 89–104. Springer-
Verlag, 1993.

[2] D. H. Eberly. 3D game engine design : a practical approach
to real-time computer graphics. Morgan Kaufmann, 2001.

[3] S. Ehmann and M. Lin. Accurate and fast proximity queries
between polyhedra using surface decomposition. In Com-
puter Graphics Forum (Proc. Eurographics), 2001.

[4] R. Farouki, C. Neff, and M. O’Connor. Automatic parsing of
degenerate quadric-surface intersection. ACM Transactions
on Graphics, 8(3):174–203, 1989.

[5] E. Gilbert, D. Johnson, and S. Keerthi. A fast procedure
for computing the distance between complex objects in 3d
space. IEEE Journ. of Robot. Autom., 4(2):193–203, 1988.

[6] K.-J. Kim. Torus and Simple Surface Intersection Based
on a Configuration Space Approach. Ph.D. thesis, Dep. of
Computer Science and Engineering, POSTECH, Feb. 1998.

[7] J. Levin. A parametric algorithm for drawing pictures of
solid objects composed of quadric surfaces. Commun. ACM,
19(10):555–563, 1976.

[8] M. C. Lin and J. F. Canny. Efficient algorithms for incre-
mental distance computation. In Proc. IEEE Internat. Conf.
Robot. Autom., volume 2, pages 1008–1014, 1991.

[9] B. Mirtich. Impulse-based dynamic simulation of rigid body
systems. PhD thesis, University of California, Berkeley,
1996.

[10] J. Reichel, E. Schömer, T. Warken, and C. Lennerz. Efficient
collision detection for curved solid objects. In Proc. 7th

ACM Symp. on Solid Modeling and Applications, SM’ 02,
2002.

[11] C. Turnbull and S. Cameron. Computing distances between
nurbs-defined convex objects. In IEEE Int. Conf. of Robot.
Autom., pages 3686–3690, 1998.

10

